Overview
TPC-H is a decision support benchmark developed by the Transaction Processing Performance Council (TPC), which includes a series of business-oriented ad-hoc queries and concurrent data modifications. This test uses 8 tables, with a data size of 100GB, and tests a total of 22 queries. The main performance metric is the response time for each query.
This report provides you with the test results of Singdata Lakehouse and Trino on the TPC-H test set with a scale of 100GB. The conclusions are as follows:

- Singdata Lakehouse outperforms Trino in overall performance across all 22 queries, with Trino's total time being 9.84 times that of Singdata Lakehouse.
- Singdata Lakehouse outperforms Trino in all queries.
Test Environment
- Trino Test Environment
Configuration Item | Configuration Information |
---|---|
Server | Alibaba Cloud EMR Datalake Cluster Service: Master Node: 1 Alibaba Cloud ECS Server (ecs.g8i.xlarge 4 vCPU 16 GiB) Core Nodes: 2 Alibaba Cloud ECS Servers (ecs.g7.16xlarge 64 vCPU 256 GiB) |
Network Bandwidth | 32Gbps |
Software | Trino(422) |
Storage Service | Alibaba Cloud OSS Object Storage |
Data Format | Parquet, LZ4 Compression |
- Singdata Lakehouse Test Environment
Configuration Item | Configuration Information |
---|---|
Compute Resources | XLarge specification compute cluster (128vCPU equivalent computing power) |
Software | Alibaba Cloud Shanghai Region - Singdata Lakehouse Service |
Storage Service | Managed Storage, Alibaba Cloud OSS Object Storage |
Test Data
Table Name | Number of Rows |
---|---|
customer | 15 million |
lineitem | 600 million |
nation | 25 |
orders | 150 million |
part | 20 million |
partsupp | 80 million |
region | 5 |
supplier | 10 million |
Statistics were collected for the data tables using Analyze.
Test Process
Trino
TPC-H data was uploaded to the object storage service in CSV format files and imported into Hive internal tables (Parquet format, LZ4 compression) using the EMR cluster through external tables. The Hive internal tables and Singdata Lakehouse use the same bucketing and sorting settings.
All data tables were analyzed to collect statistics before executing the TPC-H queries.
Singdata Lakehouse
Create Cluster
The test was conducted on Alibaba Cloud OSS using the Singdata Lakehouse XLARGE VCluster. All tables used the Parquet storage format and the same bucketing and sorting rules were set.
create vcluster if not exists XLARGE_CLUSTER vcluster_size='XLARGE' vcluster_type='Analytics' AUTO_RESUME=TRUE AUTO_SUSPEND_IN_SECOND=300 min_replicas=1 max_replicas=1;
Create Table Statement
CREATE TABLE demo_examples.tpch_100g_cluster.customer( `c_custkey` int not null, `c_name` varchar(25) not null, `c_address` varchar(40) not null, `c_nationkey` int not null, `c_phone` varchar(15) not null, `c_acctbal` decimal(15,2) not null, `c_mktsegment` varchar(10) not null, `c_comment` varchar(117) not null) HASH CLUSTERED BY(`c_custkey`) SORTED BY(`c_custkey` ASC) INTO 128 BUCKETS; CREATE TABLE demo_examples.tpch_100g_cluster.lineitem( `l_orderkey` int not null, `l_partkey` int not null, `l_suppkey` int not null, `l_linenumber` int not null, `l_quantity` decimal(15,2) not null, `l_extendedprice` decimal(15,2) not null, `l_discount` decimal(15,2) not null, `l_tax` decimal(15,2) not null, `l_returnflag` char(1) not null, `l_linestatus` char(1) not null, `l_shipdate` date not null, `l_commitdate` date not null, `l_receiptdate` date not null, `l_shipinstruct` char(25) not null, `l_shipmode` char(10) not null, `l_comment` varchar(44) not null) HASH CLUSTERED BY(`l_orderkey`) SORTED BY(`l_shipdate` ASC,`l_orderkey` ASC) INTO 128 BUCKETS; CREATE TABLE demo_examples.tpch_100g_cluster.nation( `n_nationkey` int not null, `n_name` char(25) not null, `n_regionkey` int not null, `n_comment` varchar(152)); CREATE TABLE demo_examples.tpch_100g_cluster.orders( `o_orderkey` int not null, `o_custkey` int not null, `o_orderstatus` char(1) not null, `o_totalprice` decimal(15,2) not null, `o_orderdate` date not null, `o_orderpriority` char(15) not null, `o_clerk` char(15) not null, `o_shippriority` int not null, `o_comment` varchar(79) not null) HASH CLUSTERED BY(`o_orderkey`) SORTED BY(`o_orderdate` ASC,`o_orderkey` ASC) INTO 128 BUCKETS; CREATE TABLE demo_examples.tpch_100g_cluster.part( `p_partkey` int not null, `p_name` varchar(55) not null, `p_mfgr` char(25) not null, `p_brand` char(10) not null, `p_type` varchar(25) not null, `p_size` int not null, `p_container` char(10) not null, `p_retailprice` decimal(15,2) not null, `p_comment` varchar(23) not null) HASH CLUSTERED BY(`p_partkey`) SORTED BY(`p_partkey` ASC) INTO 128 BUCKETS; CREATE TABLE demo_examples.tpch_100g_cluster.partsupp( `ps_partkey` int not null, `ps_suppkey` int not null, `ps_availqty` int not null, `ps_supplycost` decimal(15,2) not null, `ps_comment` varchar(199) not null) HASH CLUSTERED BY(`ps_partkey`) SORTED BY(`ps_partkey` ASC) INTO 128 BUCKETS; CREATE TABLE demo_examples.tpch_100g_cluster.region( `r_regionkey` int not null, `r_name` char(25) not null, `r_comment` varchar(152)); CREATE TABLE demo_examples.tpch_100g_cluster.supplier( `s_suppkey` int not null, `s_name` char(25) not null, `s_address` varchar(40) not null, `s_nationkey` int not null, `s_phone` char(15) not null, `s_acctbal` decimal(15,2) not null, `s_comment` varchar(101) not null) HASH CLUSTERED BY(`s_suppkey`) SORTED BY(`s_suppkey` ASC) INTO 128 BUCKETS;
Execute Query
--关闭result cache set cz.sql.enable.shortcut.result.cache=false; -- Q1 select /*Q1*/ l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order from clickzetta_sample_data.tpch_100g.lineitem where l_shipdate <= date '1998-12-01' - interval '85' day group by l_returnflag, l_linestatus order by l_returnflag, l_linestatus; -- Q2 select /*Q2*/ s_acctbal, -- 帐户余额 s_name, -- 名字 n_name, -- 国家 p_partkey, -- 零件的号码 p_mfgr, -- 生产者 s_address, -- 供应者的地址 s_phone, -- 电话号码 s_comment -- 备注信息 from clickzetta_sample_data.tpch_100g.part, clickzetta_sample_data.tpch_100g.supplier, clickzetta_sample_data.tpch_100g.partsupp, clickzetta_sample_data.tpch_100g.nation, clickzetta_sample_data.tpch_100g.region where p_partkey = ps_partkey and s_suppkey = ps_suppkey and p_size = 15 -- 指定大小,在区间[1, 50]内随机选择 and p_type like '%BRASS' -- 指定类型,在TPC-H标准指定的范围内随机选择 and s_nationkey = n_nationkey and n_regionkey = r_regionkey and r_name = 'EUROPE' -- 指定地区,在TPC-H标准指定的范围内随机选择 and ps_supplycost = ( select min(ps_supplycost) --聚集函数 from -- 与父查询的表有重叠 clickzetta_sample_data.tpch_100g.partsupp, clickzetta_sample_data.tpch_100g.supplier, clickzetta_sample_data.tpch_100g.nation, clickzetta_sample_data.tpch_100g.region where p_partkey = ps_partkey and s_suppkey = ps_suppkey and s_nationkey = n_nationkey and n_regionkey = r_regionkey and r_name = 'EUROPE' ) order by s_acctbal desc, n_name, s_name, p_partkey limit 100; -- Q3 select /*Q3*/ l_orderkey, sum(l_extendedprice * (1 - l_discount)) as revenue, -- 潜在的收入,聚集操作 o_orderdate, o_shippriority from clickzetta_sample_data.tpch_100g.customer, clickzetta_sample_data.tpch_100g.orders, clickzetta_sample_data.tpch_100g.lineitem where c_mktsegment = 'BUILDING' -- 在TPC-H标准指定的范围内随机选择 and c_custkey = o_custkey and l_orderkey = o_orderkey and o_orderdate < '1995-03-15' -- 指定日期段,在在[1995-03-01, 1995-03-31]中随机选择 and l_shipdate > '1995-03-15' -- 指定日期段,在在[1995-03-01, 1995-03-31]中随机选择 group by l_orderkey, -- 订单标识 o_orderdate, -- 订单日期 o_shippriority -- 运输优先级 order by revenue desc, -- 降序排序,把潜在最大收入列在前面 o_orderdate limit 10; -- Q4 select /*Q4*/ o_orderpriority, count(*) as order_count from clickzetta_sample_data.tpch_100g.orders where o_orderdate >= date '1993-10-01' and o_orderdate < date '1993-10-01' + interval '3' month and exists ( select * from clickzetta_sample_data.tpch_100g.lineitem where l_orderkey = o_orderkey and l_commitdate < l_receiptdate ) group by o_orderpriority order by o_orderpriority; -- Q5 select /*Q5*/ n_name, sum(l_extendedprice * (1 - l_discount)) as revenue from clickzetta_sample_data.tpch_100g.customer, clickzetta_sample_data.tpch_100g.orders, clickzetta_sample_data.tpch_100g.lineitem, clickzetta_sample_data.tpch_100g.supplier, clickzetta_sample_data.tpch_100g.nation, clickzetta_sample_data.tpch_100g.region where c_custkey = o_custkey and l_orderkey = o_orderkey and l_suppkey = s_suppkey and c_nationkey = s_nationkey and s_nationkey = n_nationkey and n_regionkey = r_regionkey and r_name = 'ASIA' -- 指定地区,在TPC-H标准指定的范围内随机选择 and o_orderdate >= '1994-01-01' -- DATE是从1993年到1997年中随机选择的一年的1月1日 and o_orderdate < date '1996-01-01' + interval '1' year group by n_name -- 按名字分组 order by revenue desc; -- 按收入降序排序,注意分组和排序子句不同 -- Q6 select /*Q6*/ sum(l_extendedprice * l_discount) as revenue -- 潜在的收入增加量 from clickzetta_sample_data.tpch_100g.lineitem where l_shipdate >= '1994-01-01' -- DATE是从[1993, 1997]中随机选择的一年的1月1日 and l_shipdate < date '1996-01-01' + interval '1' year -- 一年内 and l_discount between 0.06 - 0.01 and 0.06 + 0.01 and l_quantity < 24; -- QUANTITY在区间[24, 25]中随机选择 -- Q7 select/*Q7*/ supp_nation, -- 供货商国家 cust_nation, -- 顾客国家 l_year, sum(volume) as revenue -- 年度、年度的货运收入 from ( select n1.n_name as supp_nation, n2.n_name as cust_nation, extract(year from l_shipdate) as l_year, l_extendedprice * (1 - l_discount) as volume from clickzetta_sample_data.tpch_100g.supplier, clickzetta_sample_data.tpch_100g.lineitem, clickzetta_sample_data.tpch_100g.orders, clickzetta_sample_data.tpch_100g.customer, clickzetta_sample_data.tpch_100g.nation n1, clickzetta_sample_data.tpch_100g.nation n2 where s_suppkey = l_suppkey and o_orderkey = l_orderkey and c_custkey = o_custkey and s_nationkey = n1.n_nationkey and c_nationkey = n2.n_nationkey and ( -- NATION2和NATION1的值不同,表示查询的是跨国的货运情况 (n1.n_name = 'FRANCE' and n2.n_name = 'GERMANY') or (n1.n_name = 'GERMANY' and n2.n_name = 'FRANCE') ) and l_shipdate between '1995-01-01' and '1996-12-31' ) as shipping group by supp_nation, cust_nation, l_year order by supp_nation, cust_nation, l_year; -- Q8 select /*Q8*/ o_year, -- 年份 sum(case when nation = 'BRAZIL' then volume -- 指定国家,在TPC-H标准指定的范围内随机选择 else 0 end) / sum(volume) as mkt_share -- 市场份额:特定种类的产品收入的百分比;聚集操作 from ( select extract(year from o_orderdate) as o_year, -- 分解出年份 l_extendedprice * (1 - l_discount) as volume, -- 特定种类的产品收入 n2.n_name as nation from clickzetta_sample_data.tpch_100g.part, clickzetta_sample_data.tpch_100g.supplier, clickzetta_sample_data.tpch_100g.lineitem, clickzetta_sample_data.tpch_100g.orders, clickzetta_sample_data.tpch_100g.customer, clickzetta_sample_data.tpch_100g.nation n1, clickzetta_sample_data.tpch_100g.nation n2, clickzetta_sample_data.tpch_100g.region where p_partkey = l_partkey and s_suppkey = l_suppkey and l_orderkey = o_orderkey and o_custkey = c_custkey and c_nationkey = n1.n_nationkey and n1.n_regionkey = r_regionkey and r_name = 'AMERICA' -- 指定地区,在TPC-H标准指定的范围内随机选择 and s_nationkey = n2.n_nationkey and o_orderdate between '1995-01-01' and '1996-12-31' -- 只查95、96年的情况 and p_type = 'ECONOMY ANODIZED STEEL' -- 指定零件类型,在TPC-H标准指定的范围内随机选择 ) as all_nations group by o_year -- 按年分组 order by o_year; -- 按年排序 -- Q9 select /*Q9*/ nation, o_year, sum(amount) as sum_profit --每个国家每一年所有被定购的零件在一年中的总利润 from ( select n_name as nation, -- 国家 extract(year from o_orderdate) as o_year, -- 取出年份 l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity as amount --利润 from clickzetta_sample_data.tpch_100g.part, clickzetta_sample_data.tpch_100g.supplier, clickzetta_sample_data.tpch_100g.lineitem, clickzetta_sample_data.tpch_100g.partsupp, clickzetta_sample_data.tpch_100g.orders, clickzetta_sample_data.tpch_100g.nation where s_suppkey = l_suppkey and ps_suppkey = l_suppkey and ps_partkey = l_partkey and p_partkey = l_partkey and o_orderkey = l_orderkey and s_nationkey = n_nationkey and p_name like '%green%' -- LIKE操作,查询优化器可能进行优化 ) as profit group by nation, -- 国家 o_year -- 年份 order by nation, o_year desc; -- Q10 select /*Q10*/ c_custkey, c_name, sum(l_extendedprice * (1 - l_discount)) as revenue, c_acctbal, n_name, c_address, c_phone, c_comment from clickzetta_sample_data.tpch_100g.customer, clickzetta_sample_data.tpch_100g.orders, clickzetta_sample_data.tpch_100g.lineitem, clickzetta_sample_data.tpch_100g.nation where c_custkey = o_custkey and l_orderkey = o_orderkey and o_orderdate >= date '1993-04-01' and o_orderdate < date '1993-04-01' + interval '3' month and l_returnflag = 'R' and c_nationkey = n_nationkey group by c_custkey, c_name, c_acctbal, c_phone, n_name, c_address, c_comment order by revenue desc limit 20; -- Q11 select /*Q11*/ ps_partkey, sum(ps_supplycost * ps_availqty) as value from clickzetta_sample_data.tpch_100g.partsupp, clickzetta_sample_data.tpch_100g.supplier, clickzetta_sample_data.tpch_100g.nation where ps_suppkey = s_suppkey and s_nationkey = n_nationkey and n_name = 'CANADA' group by ps_partkey having sum(ps_supplycost * ps_availqty) > ( select sum(ps_supplycost * ps_availqty) * 0.000001000000 from clickzetta_sample_data.tpch_100g.partsupp, clickzetta_sample_data.tpch_100g.supplier, clickzetta_sample_data.tpch_100g.nation where ps_suppkey = s_suppkey and s_nationkey = n_nationkey and n_name = 'CANADA' ) order by value desc; -- Q12 select/*Q12*/ l_shipmode, sum(case when o_orderpriority = '1-URGENT' or o_orderpriority = '2-HIGH' then 1 else 0 end) as high_line_count, sum(case when o_orderpriority <> '1-URGENT' and o_orderpriority <> '2-HIGH' then 1 else 0 end) as low_line_count from clickzetta_sample_data.tpch_100g.orders, clickzetta_sample_data.tpch_100g.lineitem where o_orderkey = l_orderkey and l_shipmode in ('RAIL', 'SHIP') and l_commitdate < l_receiptdate and l_shipdate < l_commitdate and l_receiptdate >= date '1994-01-01' and l_receiptdate < date '1994-01-01' + interval '1' year group by l_shipmode order by l_shipmode; -- Q13 select/*Q13*/ c_count, count(*) as custdist from ( select c_custkey, count(o_orderkey) as c_count from -- 子查询中包括左外连接操作 clickzetta_sample_data.tpch_100g.customer left outer join clickzetta_sample_data.tpch_100g.orders on c_custkey = o_custkey and o_comment not like '%special%requests%' -- WORD1 为以下四个可能值中任意一个:special、pending、unusual、express -- WORD2 为以下四个可能值中任意一个:packages、requests、accounts、deposits group by c_custkey ) c_orders group by c_count order by custdist desc, c_count desc; -- Q14 select/*14*/ 100.00 * sum(case when p_type like 'PROMO%' -- 促销零件 then l_extendedprice * (1 - l_discount) -- 某一特定时间的收入 else 0 end) / sum(l_extendedprice * (1 - l_discount)) as promo_revenue from clickzetta_sample_data.tpch_100g.lineitem, clickzetta_sample_data.tpch_100g.part where l_partkey = p_partkey and l_shipdate >= date '1994-04-01' -- DATE是从1993年到1997年中任一年的任一月的一号 and l_shipdate < date '1994-04-01' + interval '1' month; -- Q15 select/*Q15*/ s_suppkey, s_name, s_address, s_phone, total_revenue from clickzetta_sample_data.tpch_100g.supplier, ( select l_suppkey supplier_no, sum(l_extendedprice * (1 - l_discount)) total_revenue from clickzetta_sample_data.tpch_100g.lineitem where l_shipdate >= date '1994-05-01' and l_shipdate < date '1994-05-01' + interval '3' month group by l_suppkey ) as revenue0 where s_suppkey = supplier_no and total_revenue = ( select max(total_revenue) from ( select l_suppkey supplier_no, sum(l_extendedprice * (1 - l_discount)) total_revenue from clickzetta_sample_data.tpch_100g.lineitem where l_shipdate >= date '1994-05-01' and l_shipdate < date '1994-05-01' + interval '3' month group by l_suppkey ) as revenue0 ) order by s_suppkey; -- Q16 select/*Q16*/ p_brand, p_type, p_size, count(distinct ps_suppkey) as supplier_cnt -- 聚集、去重操作 from clickzetta_sample_data.tpch_100g.partsupp, clickzetta_sample_data.tpch_100g.part where p_partkey = ps_partkey and p_brand <> 'Brand#45' --BRAND=Brand --MN ,M和N是两个字母,代表两个数值,相互独立,取值在1到5之间 and p_type not like 'MEDIUM POLISHED%' -- 消费者不感兴趣的类型和尺寸 and p_size in (49, 14, 23, 45, 19, 3, 36, 9) -- TYPEX是在1到50之间任意选择的一组八个不同的值 and ps_suppkey not in ( -- NOT IN子查询,消费者排除某些供货商 select s_suppkey from clickzetta_sample_data.tpch_100g.supplier where s_comment like '%Customer%Complaints%' ) group by p_brand, p_type, p_size order by -- 按数量降序排列,按品牌、种类、尺寸升序排列 supplier_cnt desc, p_brand, p_type, p_size; -- Q17 select /*Q17*/ sum(l_extendedprice) / 7.0 as avg_yearly from clickzetta_sample_data.tpch_100g.lineitem, clickzetta_sample_data.tpch_100g.part where p_partkey = l_partkey and p_brand = 'Brand#23' and p_container = 'WRAP BAG' and l_quantity < ( select 0.2 * avg(l_quantity) from clickzetta_sample_data.tpch_100g.lineitem where l_partkey = p_partkey ); -- Q18 select /*Q18*/ c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice, sum(l_quantity) --订货总数 from clickzetta_sample_data.tpch_100g.customer, clickzetta_sample_data.tpch_100g.orders, clickzetta_sample_data.tpch_100g.lineitem where o_orderkey in ( select l_orderkey from clickzetta_sample_data.tpch_100g.lineitem group by l_orderkey having sum(l_quantity) > 300 -- QUANTITY是位于312到315之间的任意值 ) and c_custkey = o_custkey and o_orderkey = l_orderkey group by c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice order by o_totalprice desc, o_orderdate limit 100; -- Q19 select/*Q19*/ sum(l_extendedprice* (1 - l_discount)) as revenue from clickzetta_sample_data.tpch_100g.lineitem, clickzetta_sample_data.tpch_100g.part where ( p_partkey = l_partkey and p_brand = 'Brand#12' and p_container in ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG') and l_quantity >= 1 and l_quantity <= 1 + 10 and p_size between 1 and 5 and l_shipmode in ('AIR', 'AIR REG') and l_shipinstruct = 'DELIVER IN PERSON' ) or ( p_partkey = l_partkey and p_brand = 'Brand#23' and p_container in ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK') and l_quantity >= 10 and l_quantity <= 10 + 10 and p_size between 1 and 10 and l_shipmode in ('AIR', 'AIR REG') and l_shipinstruct = 'DELIVER IN PERSON' ) or ( p_partkey = l_partkey and p_brand = 'Brand#34' and p_container in ('LG CASE', 'LG BOX', 'LG PACK', 'LG PKG') and l_quantity >= 20 and l_quantity <= 20 + 10 and p_size between 1 and 15 and l_shipmode in ('AIR', 'AIR REG') and l_shipinstruct = 'DELIVER IN PERSON' ); -- Q20 select/*Q20*/ s_name, s_address from clickzetta_sample_data.tpch_100g.supplier, clickzetta_sample_data.tpch_100g.nation where s_suppkey in ( select ps_suppkey from clickzetta_sample_data.tpch_100g.partsupp where ps_partkey in ( select p_partkey from clickzetta_sample_data.tpch_100g.part where p_name like 'antique%' ) and ps_availqty > ( select 0.5 * sum(l_quantity) from clickzetta_sample_data.tpch_100g.lineitem where l_partkey = ps_partkey and l_suppkey = ps_suppkey and l_shipdate >= date '1993-01-01' and l_shipdate < date '1993-01-01' + interval '1' year ) ) and s_nationkey = n_nationkey and n_name = 'IRAQ' order by s_name; -- Q21 select /*Q21*/ s_name, count(*) as numwait from clickzetta_sample_data.tpch_100g.supplier, clickzetta_sample_data.tpch_100g.lineitem l1, clickzetta_sample_data.tpch_100g.orders, clickzetta_sample_data.tpch_100g.nation where s_suppkey = l1.l_suppkey and o_orderkey = l1.l_orderkey and o_orderstatus = 'F' and l1.l_receiptdate > l1.l_commitdate and exists ( -- EXISTS子查询 select * from clickzetta_sample_data.tpch_100g.lineitem l2 where l2.l_orderkey = l1.l_orderkey and l2.l_suppkey <> l1.l_suppkey ) and not exists (-- NOT EXISTS子查询 select * from clickzetta_sample_data.tpch_100g.lineitem l3 where l3.l_orderkey = l1.l_orderkey and l3.l_suppkey <> l1.l_suppkey and l3.l_receiptdate > l3.l_commitdate ) and s_nationkey = n_nationkey and n_name = 'SAUDI ARABIA' -- TPC-H标准定义的任意值 group by s_name order by numwait desc, s_name limit 100; -- Q22 select/*Q22*/ cntrycode, count(*) as numcust, sum(c_acctbal) as totacctbal from ( -- 第一层子查询 select substring(c_phone from 1 for 2) as cntrycode, c_acctbal from clickzetta_sample_data.tpch_100g.customer where substring(c_phone from 1 for 2) in ('13', '31', '23', '29', '30', '18', '17') -- I1…I7是在TPC-H中定义国家代码的可能值中不重复的任意值 and c_acctbal > ( -- 第二层聚集子查询 select avg(c_acctbal) from clickzetta_sample_data.tpch_100g.customer where c_acctbal > 0.00 and substring(c_phone from 1 for 2) in ('13', '31', '23', '29', '30', '18', '17') ) and not exists ( -- 第二层NOT EXISTS子查询 select * from clickzetta_sample_data.tpch_100g.orders where o_custkey = c_custkey ) ) as custsale group by cntrycode order by cntrycode;
Test Results
Below are the performance test results of Singdata Lakehouse and Trino on 22 queries, measured in milliseconds (ms). Lower values indicate better performance.
- All queries were pre-warmed once, then executed three times, and the average value was taken as the result.
Query | Singdata Lakehouse | Trino | Trino vs Singdata Lakehouse |
---|---|---|---|
Q1 | 658 | 3240 | 4.92 |
Q2 | 180 | 740 | 4.11 |
Q3 | 300 | 1840 | 6.13 |
Q4 | 177 | 2970 | 16.78 |
Q5 | 844 | 1670 | 1.98 |
Q6 | 89 | 2550 | 28.65 |
Q7 | 251 | 1190 | 4.74 |
Q8 | 441 | 2400 | 5.44 |
Q9 | 794 | 12830 | 16.16 |
Q10 | 308 | 2520 | 8.18 |
Q11 | 151 | 300 | 1.99 |
Q12 | 122 | 1060 | 8.69 |
Q13 | 532 | 4570 | 8.59 |
Q14 | 87 | 2480 | 28.51 |
Q15 | 155 | 4140 | 26.71 |
Q16 | 177 | 1670 | 9.44 |
Q17 | 257 | 8520 | 33.15 |
Q18 | 726 | 9280 | 12.78 |
Q19 | 261 | 910 | 3.49 |
Q20 | 197 | 2710 | 13.76 |
Q21 | 462 | 3650 | 7.90 |
Q22 | 233 | 1620 | 6.95 |
Total | 7402 | 72860 | 9.84 |