Overview

TPC-H is a decision support benchmark developed by the Transaction Processing Performance Council (TPC), which includes a series of business-oriented ad-hoc queries and concurrent data modifications. This test uses 8 tables, with a data size of 100GB, and tests a total of 22 queries. The main performance metric is the response time for each query.

This report provides you with the test results of Singdata Lakehouse and Trino on the TPC-H test set with a scale of 100GB. The conclusions are as follows:

  • Singdata Lakehouse outperforms Trino in overall performance across all 22 queries, with Trino's total time being 9.84 times that of Singdata Lakehouse.
  • Singdata Lakehouse outperforms Trino in all queries.

Test Environment

  • Trino Test Environment
Configuration ItemConfiguration Information
ServerAlibaba Cloud EMR Datalake Cluster Service: Master Node: 1 Alibaba Cloud ECS Server (ecs.g8i.xlarge 4 vCPU 16 GiB) Core Nodes: 2 Alibaba Cloud ECS Servers (ecs.g7.16xlarge 64 vCPU 256 GiB)
Network Bandwidth32Gbps
SoftwareTrino(422)
Storage ServiceAlibaba Cloud OSS Object Storage
Data FormatParquet, LZ4 Compression
  • Singdata Lakehouse Test Environment
Configuration ItemConfiguration Information
Compute ResourcesXLarge specification compute cluster (128vCPU equivalent computing power)
SoftwareAlibaba Cloud Shanghai Region - Singdata Lakehouse Service
Storage ServiceManaged Storage, Alibaba Cloud OSS Object Storage

Test Data

Table NameNumber of Rows
customer15 million
lineitem600 million
nation25
orders150 million
part20 million
partsupp80 million
region5
supplier10 million

Statistics were collected for the data tables using Analyze.

Test Process

Trino

TPC-H data was uploaded to the object storage service in CSV format files and imported into Hive internal tables (Parquet format, LZ4 compression) using the EMR cluster through external tables. The Hive internal tables and Singdata Lakehouse use the same bucketing and sorting settings.

All data tables were analyzed to collect statistics before executing the TPC-H queries.

Singdata Lakehouse

Create Cluster

The test was conducted on Alibaba Cloud OSS using the Singdata Lakehouse XLARGE VCluster. All tables used the Parquet storage format and the same bucketing and sorting rules were set.

create vcluster if not exists XLARGE_CLUSTER vcluster_size='XLARGE' vcluster_type='Analytics'  AUTO_RESUME=TRUE AUTO_SUSPEND_IN_SECOND=300 min_replicas=1 max_replicas=1;

Create Table Statement

CREATE TABLE demo_examples.tpch_100g_cluster.customer(
  `c_custkey` int not null,
  `c_name` varchar(25) not null,
  `c_address` varchar(40) not null,
  `c_nationkey` int not null,
  `c_phone` varchar(15) not null,
  `c_acctbal` decimal(15,2) not null,
  `c_mktsegment` varchar(10) not null,
  `c_comment` varchar(117) not null)
HASH CLUSTERED BY(`c_custkey`)
SORTED BY(`c_custkey` ASC)
INTO 128 BUCKETS;

CREATE TABLE demo_examples.tpch_100g_cluster.lineitem(
  `l_orderkey` int not null,
  `l_partkey` int not null,
  `l_suppkey` int not null,
  `l_linenumber` int not null,
  `l_quantity` decimal(15,2) not null,
  `l_extendedprice` decimal(15,2) not null,
  `l_discount` decimal(15,2) not null,
  `l_tax` decimal(15,2) not null,
  `l_returnflag` char(1) not null,
  `l_linestatus` char(1) not null,
  `l_shipdate` date not null,
  `l_commitdate` date not null,
  `l_receiptdate` date not null,
  `l_shipinstruct` char(25) not null,
  `l_shipmode` char(10) not null,
  `l_comment` varchar(44) not null)
HASH CLUSTERED BY(`l_orderkey`)
SORTED BY(`l_shipdate` ASC,`l_orderkey` ASC)
INTO 128 BUCKETS;

CREATE TABLE demo_examples.tpch_100g_cluster.nation(
  `n_nationkey` int not null,
  `n_name` char(25) not null,
  `n_regionkey` int not null,
  `n_comment` varchar(152));

CREATE TABLE demo_examples.tpch_100g_cluster.orders(
  `o_orderkey` int not null,
  `o_custkey` int not null,
  `o_orderstatus` char(1) not null,
  `o_totalprice` decimal(15,2) not null,
  `o_orderdate` date not null,
  `o_orderpriority` char(15) not null,
  `o_clerk` char(15) not null,
  `o_shippriority` int not null,
  `o_comment` varchar(79) not null)
HASH CLUSTERED BY(`o_orderkey`)
SORTED BY(`o_orderdate` ASC,`o_orderkey` ASC)
INTO 128 BUCKETS;

CREATE TABLE demo_examples.tpch_100g_cluster.part(
  `p_partkey` int not null,
  `p_name` varchar(55) not null,
  `p_mfgr` char(25) not null,
  `p_brand` char(10) not null,
  `p_type` varchar(25) not null,
  `p_size` int not null,
  `p_container` char(10) not null,
  `p_retailprice` decimal(15,2) not null,
  `p_comment` varchar(23) not null)
HASH CLUSTERED BY(`p_partkey`)
SORTED BY(`p_partkey` ASC)
INTO 128 BUCKETS;

CREATE TABLE demo_examples.tpch_100g_cluster.partsupp(
  `ps_partkey` int not null,
  `ps_suppkey` int not null,
  `ps_availqty` int not null,
  `ps_supplycost` decimal(15,2) not null,
  `ps_comment` varchar(199) not null)
HASH CLUSTERED BY(`ps_partkey`)
SORTED BY(`ps_partkey` ASC)
INTO 128 BUCKETS;

CREATE TABLE demo_examples.tpch_100g_cluster.region(
  `r_regionkey` int not null,
  `r_name` char(25) not null,
  `r_comment` varchar(152));

CREATE TABLE demo_examples.tpch_100g_cluster.supplier(
  `s_suppkey` int not null,
  `s_name` char(25) not null,
  `s_address` varchar(40) not null,
  `s_nationkey` int not null,
  `s_phone` char(15) not null,
  `s_acctbal` decimal(15,2) not null,
  `s_comment` varchar(101) not null)
HASH CLUSTERED BY(`s_suppkey`)
SORTED BY(`s_suppkey` ASC)
INTO 128 BUCKETS;

Execute Query

--关闭result cache
set cz.sql.enable.shortcut.result.cache=false;
-- Q1
select /*Q1*/
    l_returnflag,
    l_linestatus,
    sum(l_quantity) as sum_qty,
    sum(l_extendedprice) as sum_base_price,
    sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,
    sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,
    avg(l_quantity) as avg_qty,
    avg(l_extendedprice) as avg_price,
    avg(l_discount) as avg_disc,
    count(*) as count_order
from
    clickzetta_sample_data.tpch_100g.lineitem
where
    l_shipdate <= date '1998-12-01' - interval '85' day
group by
    l_returnflag,
    l_linestatus
order by
    l_returnflag,
    l_linestatus;

-- Q2
select /*Q2*/
s_acctbal, -- 帐户余额
s_name, -- 名字
n_name, -- 国家
p_partkey, -- 零件的号码
p_mfgr, -- 生产者
s_address, -- 供应者的地址
s_phone, -- 电话号码
s_comment -- 备注信息
from
clickzetta_sample_data.tpch_100g.part,
clickzetta_sample_data.tpch_100g.supplier,
clickzetta_sample_data.tpch_100g.partsupp,
clickzetta_sample_data.tpch_100g.nation,
clickzetta_sample_data.tpch_100g.region
where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and p_size = 15 -- 指定大小,在区间[1, 50]内随机选择
and p_type like '%BRASS' -- 指定类型,在TPC-H标准指定的范围内随机选择
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = 'EUROPE' -- 指定地区,在TPC-H标准指定的范围内随机选择
and ps_supplycost = (
select
min(ps_supplycost) --聚集函数
from   -- 与父查询的表有重叠
clickzetta_sample_data.tpch_100g.partsupp,
clickzetta_sample_data.tpch_100g.supplier,
clickzetta_sample_data.tpch_100g.nation,
clickzetta_sample_data.tpch_100g.region
where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = 'EUROPE'
)
order by
s_acctbal desc,
n_name,
s_name,
p_partkey
limit 100;

-- Q3
select /*Q3*/
    l_orderkey,
    sum(l_extendedprice * (1 - l_discount)) as revenue, -- 潜在的收入,聚集操作
    o_orderdate,
    o_shippriority
from
    clickzetta_sample_data.tpch_100g.customer,
    clickzetta_sample_data.tpch_100g.orders,
    clickzetta_sample_data.tpch_100g.lineitem
where
    c_mktsegment = 'BUILDING' -- 在TPC-H标准指定的范围内随机选择
    and c_custkey = o_custkey
    and l_orderkey = o_orderkey
    and o_orderdate < '1995-03-15' -- 指定日期段,在在[1995-03-01, 1995-03-31]中随机选择
    and l_shipdate > '1995-03-15'  -- 指定日期段,在在[1995-03-01, 1995-03-31]中随机选择
group by
    l_orderkey, -- 订单标识
    o_orderdate,  -- 订单日期
    o_shippriority -- 运输优先级
order by
    revenue desc, -- 降序排序,把潜在最大收入列在前面
    o_orderdate
limit 10;

-- Q4
select /*Q4*/
    o_orderpriority,
    count(*) as order_count
from
    clickzetta_sample_data.tpch_100g.orders
where
    o_orderdate >= date '1993-10-01'
    and o_orderdate < date '1993-10-01' + interval '3' month
    and exists (
        select
            *
        from
            clickzetta_sample_data.tpch_100g.lineitem
        where
            l_orderkey = o_orderkey
            and l_commitdate < l_receiptdate
    )
group by
    o_orderpriority
order by
    o_orderpriority;

-- Q5
select /*Q5*/
    n_name,
    sum(l_extendedprice * (1 - l_discount)) as revenue
from
    clickzetta_sample_data.tpch_100g.customer,
    clickzetta_sample_data.tpch_100g.orders,
    clickzetta_sample_data.tpch_100g.lineitem,
    clickzetta_sample_data.tpch_100g.supplier,
    clickzetta_sample_data.tpch_100g.nation,
    clickzetta_sample_data.tpch_100g.region
where
    c_custkey = o_custkey
    and l_orderkey = o_orderkey
    and l_suppkey = s_suppkey
    and c_nationkey = s_nationkey
    and s_nationkey = n_nationkey
    and n_regionkey = r_regionkey
    and r_name = 'ASIA' -- 指定地区,在TPC-H标准指定的范围内随机选择
    and o_orderdate >= '1994-01-01' -- DATE是从1993年到1997年中随机选择的一年的1月1日
    and o_orderdate < date '1996-01-01' + interval '1' year
group by
    n_name -- 按名字分组
order by
    revenue desc; -- 按收入降序排序,注意分组和排序子句不同

-- Q6
select /*Q6*/
    sum(l_extendedprice * l_discount) as revenue -- 潜在的收入增加量
from
    clickzetta_sample_data.tpch_100g.lineitem
where
    l_shipdate >= '1994-01-01' -- DATE是从[1993, 1997]中随机选择的一年的1月1日
    and l_shipdate < date '1996-01-01' + interval '1' year -- 一年内
    and l_discount between 0.06 - 0.01 and 0.06 + 0.01
    and l_quantity < 24; -- QUANTITY在区间[24, 25]中随机选择

-- Q7
select/*Q7*/
    supp_nation, -- 供货商国家
    cust_nation, -- 顾客国家
    l_year,
    sum(volume) as revenue -- 年度、年度的货运收入
from
    (
        select
            n1.n_name as supp_nation,
            n2.n_name as cust_nation,
            extract(year from l_shipdate) as l_year,
            l_extendedprice * (1 - l_discount) as volume
        from
            clickzetta_sample_data.tpch_100g.supplier,
            clickzetta_sample_data.tpch_100g.lineitem,
            clickzetta_sample_data.tpch_100g.orders,
            clickzetta_sample_data.tpch_100g.customer,
            clickzetta_sample_data.tpch_100g.nation n1,
            clickzetta_sample_data.tpch_100g.nation n2
        where
            s_suppkey = l_suppkey
            and o_orderkey = l_orderkey
            and c_custkey = o_custkey
            and s_nationkey = n1.n_nationkey
            and c_nationkey = n2.n_nationkey
            and ( -- NATION2和NATION1的值不同,表示查询的是跨国的货运情况
                (n1.n_name = 'FRANCE' and n2.n_name = 'GERMANY')
                or (n1.n_name = 'GERMANY' and n2.n_name = 'FRANCE')
            )
            and l_shipdate between '1995-01-01' and '1996-12-31'
    ) as shipping
group by
    supp_nation,
    cust_nation,
    l_year
order by
    supp_nation,
    cust_nation,
    l_year;

-- Q8
select /*Q8*/
    o_year, -- 年份
    sum(case
        when nation = 'BRAZIL' then volume -- 指定国家,在TPC-H标准指定的范围内随机选择
        else 0
    end) / sum(volume) as mkt_share -- 市场份额:特定种类的产品收入的百分比;聚集操作
from
    (
        select
            extract(year from o_orderdate) as o_year, -- 分解出年份
            l_extendedprice * (1 - l_discount) as volume, -- 特定种类的产品收入
            n2.n_name as nation
        from
            clickzetta_sample_data.tpch_100g.part,
            clickzetta_sample_data.tpch_100g.supplier,
            clickzetta_sample_data.tpch_100g.lineitem,
            clickzetta_sample_data.tpch_100g.orders,
            clickzetta_sample_data.tpch_100g.customer,
            clickzetta_sample_data.tpch_100g.nation n1,
            clickzetta_sample_data.tpch_100g.nation n2,
            clickzetta_sample_data.tpch_100g.region
        where
            p_partkey = l_partkey
            and s_suppkey = l_suppkey
            and l_orderkey = o_orderkey
            and o_custkey = c_custkey
            and c_nationkey = n1.n_nationkey
            and n1.n_regionkey = r_regionkey
            and r_name = 'AMERICA' -- 指定地区,在TPC-H标准指定的范围内随机选择
            and s_nationkey = n2.n_nationkey
            and o_orderdate between '1995-01-01' and '1996-12-31' -- 只查95、96年的情况
            and p_type = 'ECONOMY ANODIZED STEEL' -- 指定零件类型,在TPC-H标准指定的范围内随机选择
    ) as all_nations
group by
    o_year -- 按年分组
order by
    o_year; -- 按年排序

-- Q9
select /*Q9*/
    nation,
    o_year,
    sum(amount) as sum_profit --每个国家每一年所有被定购的零件在一年中的总利润
from
    (
        select
            n_name as nation, -- 国家
            extract(year from o_orderdate) as o_year, -- 取出年份
            l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity as amount --利润
        from
            clickzetta_sample_data.tpch_100g.part,
            clickzetta_sample_data.tpch_100g.supplier,
            clickzetta_sample_data.tpch_100g.lineitem,
            clickzetta_sample_data.tpch_100g.partsupp,
            clickzetta_sample_data.tpch_100g.orders,
            clickzetta_sample_data.tpch_100g.nation
        where
            s_suppkey = l_suppkey
            and ps_suppkey = l_suppkey
            and ps_partkey = l_partkey
            and p_partkey = l_partkey
            and o_orderkey = l_orderkey
            and s_nationkey = n_nationkey
            and p_name like '%green%' -- LIKE操作,查询优化器可能进行优化
    ) as profit
group by
    nation, -- 国家
    o_year  -- 年份
order by
    nation, 
    o_year desc;

-- Q10
select /*Q10*/
    c_custkey,
    c_name,
    sum(l_extendedprice * (1 - l_discount)) as revenue,
    c_acctbal,
    n_name,
    c_address,
    c_phone,
    c_comment
from
    clickzetta_sample_data.tpch_100g.customer,
    clickzetta_sample_data.tpch_100g.orders,
    clickzetta_sample_data.tpch_100g.lineitem,
    clickzetta_sample_data.tpch_100g.nation
where
    c_custkey = o_custkey
    and l_orderkey = o_orderkey
    and o_orderdate >= date '1993-04-01'
    and o_orderdate < date '1993-04-01' + interval '3' month
    and l_returnflag = 'R'
    and c_nationkey = n_nationkey
group by
    c_custkey,
    c_name,
    c_acctbal,
    c_phone,
    n_name,
    c_address,
    c_comment
order by
    revenue desc
limit 20;

-- Q11
select /*Q11*/
    ps_partkey,
    sum(ps_supplycost * ps_availqty) as value
from
    clickzetta_sample_data.tpch_100g.partsupp,
    clickzetta_sample_data.tpch_100g.supplier,
    clickzetta_sample_data.tpch_100g.nation
where
    ps_suppkey = s_suppkey
    and s_nationkey = n_nationkey
    and n_name = 'CANADA'
group by
    ps_partkey having
        sum(ps_supplycost * ps_availqty) > (
            select
                sum(ps_supplycost * ps_availqty) * 0.000001000000
            from
                clickzetta_sample_data.tpch_100g.partsupp,
                clickzetta_sample_data.tpch_100g.supplier,
                clickzetta_sample_data.tpch_100g.nation
            where
                ps_suppkey = s_suppkey
                and s_nationkey = n_nationkey
                and n_name = 'CANADA'
        )
order by
    value desc;

-- Q12
select/*Q12*/
    l_shipmode,
    sum(case
        when o_orderpriority = '1-URGENT'
            or o_orderpriority = '2-HIGH'
            then 1
        else 0
    end) as high_line_count,
    sum(case
        when o_orderpriority <> '1-URGENT'
            and o_orderpriority <> '2-HIGH'
            then 1
        else 0
    end) as low_line_count
from
    clickzetta_sample_data.tpch_100g.orders,
    clickzetta_sample_data.tpch_100g.lineitem
where
    o_orderkey = l_orderkey
    and l_shipmode in ('RAIL', 'SHIP')
    and l_commitdate < l_receiptdate
    and l_shipdate < l_commitdate
    and l_receiptdate >= date '1994-01-01'
    and l_receiptdate < date '1994-01-01' + interval '1' year
group by
    l_shipmode
order by
    l_shipmode;

-- Q13
select/*Q13*/
    c_count,
    count(*) as custdist
from
    (
        select
            c_custkey,
            count(o_orderkey) as c_count
        from  -- 子查询中包括左外连接操作
            clickzetta_sample_data.tpch_100g.customer left outer join clickzetta_sample_data.tpch_100g.orders on
                c_custkey = o_custkey
                and o_comment not like '%special%requests%'
                -- WORD1 为以下四个可能值中任意一个:special、pending、unusual、express
                -- WORD2 为以下四个可能值中任意一个:packages、requests、accounts、deposits
        group by
            c_custkey
    ) c_orders
group by
    c_count
order by
    custdist desc,
    c_count desc;

-- Q14
select/*14*/
    100.00 * sum(case
        when p_type like 'PROMO%'  -- 促销零件
            then l_extendedprice * (1 - l_discount)  -- 某一特定时间的收入
        else 0
    end) / sum(l_extendedprice * (1 - l_discount)) as promo_revenue
from
    clickzetta_sample_data.tpch_100g.lineitem,
    clickzetta_sample_data.tpch_100g.part
where
    l_partkey = p_partkey
    and l_shipdate >= date '1994-04-01' -- DATE是从1993年到1997年中任一年的任一月的一号
    and l_shipdate < date '1994-04-01' + interval '1' month;    

-- Q15
select/*Q15*/
    s_suppkey,
    s_name,
    s_address,
    s_phone,
    total_revenue
from
    clickzetta_sample_data.tpch_100g.supplier,
    (
        select
            l_suppkey supplier_no,
            sum(l_extendedprice * (1 - l_discount)) total_revenue
        from
            clickzetta_sample_data.tpch_100g.lineitem
        where
                l_shipdate >= date '1994-05-01'
          and l_shipdate < date '1994-05-01' + interval '3' month
        group by
            l_suppkey
    ) as revenue0
where
    s_suppkey = supplier_no
    and total_revenue = (
        select
            max(total_revenue)
        from 
            (
        select
            l_suppkey supplier_no,
            sum(l_extendedprice * (1 - l_discount)) total_revenue
        from
            clickzetta_sample_data.tpch_100g.lineitem
        where
                l_shipdate >= date '1994-05-01'
          and l_shipdate < date '1994-05-01' + interval '3' month
        group by
            l_suppkey
        ) as revenue0
    )
order by
    s_suppkey;

-- Q16
select/*Q16*/
    p_brand,
    p_type,
    p_size,
    count(distinct ps_suppkey) as supplier_cnt -- 聚集、去重操作
from
    clickzetta_sample_data.tpch_100g.partsupp,
    clickzetta_sample_data.tpch_100g.part
where
    p_partkey = ps_partkey
    and p_brand <> 'Brand#45' --BRAND=Brand  --MN ,M和N是两个字母,代表两个数值,相互独立,取值在1到5之间
    and p_type not like 'MEDIUM POLISHED%' -- 消费者不感兴趣的类型和尺寸
    and p_size in (49, 14, 23, 45, 19, 3, 36, 9) -- TYPEX是在1到50之间任意选择的一组八个不同的值
    and ps_suppkey not in ( -- NOT IN子查询,消费者排除某些供货商
        select
            s_suppkey
        from
            clickzetta_sample_data.tpch_100g.supplier
        where
            s_comment like '%Customer%Complaints%'
    )
group by
    p_brand,
    p_type,
    p_size
order by  -- 按数量降序排列,按品牌、种类、尺寸升序排列
    supplier_cnt desc,  
    p_brand,
    p_type,
    p_size;

-- Q17
select /*Q17*/
    sum(l_extendedprice) / 7.0 as avg_yearly
from
    clickzetta_sample_data.tpch_100g.lineitem,
    clickzetta_sample_data.tpch_100g.part
where
    p_partkey = l_partkey
    and p_brand = 'Brand#23'
    and p_container = 'WRAP BAG'
    and l_quantity < (
        select
            0.2 * avg(l_quantity)
        from
            clickzetta_sample_data.tpch_100g.lineitem
        where
            l_partkey = p_partkey
    );

-- Q18
select /*Q18*/
    c_name,
    c_custkey,
    o_orderkey,
    o_orderdate,
    o_totalprice,
    sum(l_quantity) --订货总数
from
    clickzetta_sample_data.tpch_100g.customer,
    clickzetta_sample_data.tpch_100g.orders,
    clickzetta_sample_data.tpch_100g.lineitem
where
    o_orderkey in (
        select
            l_orderkey
        from
            clickzetta_sample_data.tpch_100g.lineitem
        group by
            l_orderkey having
                sum(l_quantity) > 300 -- QUANTITY是位于312到315之间的任意值
    )
    and c_custkey = o_custkey
    and o_orderkey = l_orderkey
group by
    c_name,
    c_custkey,
    o_orderkey,
    o_orderdate,
    o_totalprice
order by
    o_totalprice desc,
    o_orderdate
limit 100;

-- Q19
select/*Q19*/
    sum(l_extendedprice* (1 - l_discount)) as revenue
from
    clickzetta_sample_data.tpch_100g.lineitem,
    clickzetta_sample_data.tpch_100g.part
where
    (
        p_partkey = l_partkey
        and p_brand = 'Brand#12' 
        and p_container in ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG') 
        and l_quantity >= 1 and l_quantity <= 1 + 10 
        and p_size between 1 and 5 
        and l_shipmode in ('AIR', 'AIR REG') 
        and l_shipinstruct = 'DELIVER IN PERSON'
    )
    or
    (
        p_partkey = l_partkey
        and p_brand = 'Brand#23'
        and p_container in ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK')
        and l_quantity >= 10 and l_quantity <= 10 + 10 
        and p_size between 1 and 10
        and l_shipmode in ('AIR', 'AIR REG')
        and l_shipinstruct = 'DELIVER IN PERSON'
    )
    or
    (
        p_partkey = l_partkey
        and p_brand = 'Brand#34'
        and p_container in ('LG CASE', 'LG BOX', 'LG PACK', 'LG PKG')
        and l_quantity >= 20 and l_quantity <= 20 + 10 
        and p_size between 1 and 15
        and l_shipmode in ('AIR', 'AIR REG')
        and l_shipinstruct = 'DELIVER IN PERSON'
    );

-- Q20
select/*Q20*/
    s_name,
    s_address
from
    clickzetta_sample_data.tpch_100g.supplier,
    clickzetta_sample_data.tpch_100g.nation
where
    s_suppkey in (
        select
            ps_suppkey
        from
            clickzetta_sample_data.tpch_100g.partsupp
        where
            ps_partkey in (
                select
                    p_partkey
                from
                    clickzetta_sample_data.tpch_100g.part
                where
                    p_name like 'antique%'
            )
            and ps_availqty > (
                select
                    0.5 * sum(l_quantity)
                from
                    clickzetta_sample_data.tpch_100g.lineitem
                where
                    l_partkey = ps_partkey
                    and l_suppkey = ps_suppkey
                    and l_shipdate >= date '1993-01-01'
                    and l_shipdate < date '1993-01-01' + interval '1' year
            )
    )
    and s_nationkey = n_nationkey
    and n_name = 'IRAQ'
order by
    s_name;

-- Q21
select /*Q21*/
    s_name,
    count(*) as numwait
from
    clickzetta_sample_data.tpch_100g.supplier,
    clickzetta_sample_data.tpch_100g.lineitem l1,
    clickzetta_sample_data.tpch_100g.orders,
    clickzetta_sample_data.tpch_100g.nation
where
    s_suppkey = l1.l_suppkey
    and o_orderkey = l1.l_orderkey
    and o_orderstatus = 'F'
    and l1.l_receiptdate > l1.l_commitdate
    and exists ( -- EXISTS子查询
        select
            *
        from
            clickzetta_sample_data.tpch_100g.lineitem l2
        where
            l2.l_orderkey = l1.l_orderkey
            and l2.l_suppkey <> l1.l_suppkey
    )
    and not exists (-- NOT EXISTS子查询
        select
            *
        from
           clickzetta_sample_data.tpch_100g.lineitem l3
        where
            l3.l_orderkey = l1.l_orderkey
            and l3.l_suppkey <> l1.l_suppkey
            and l3.l_receiptdate > l3.l_commitdate
    )
    and s_nationkey = n_nationkey
    and n_name = 'SAUDI ARABIA' -- TPC-H标准定义的任意值
group by
    s_name
order by
    numwait desc,
    s_name
limit 100;

-- Q22
select/*Q22*/
    cntrycode,
    count(*) as numcust,
    sum(c_acctbal) as totacctbal
from
    ( -- 第一层子查询
        select
            substring(c_phone from 1 for 2) as cntrycode,
            c_acctbal
        from
            clickzetta_sample_data.tpch_100g.customer
        where
            substring(c_phone from 1 for 2) in
                ('13', '31', '23', '29', '30', '18', '17') -- I1…I7是在TPC-H中定义国家代码的可能值中不重复的任意值
            and c_acctbal > ( -- 第二层聚集子查询
                select
                    avg(c_acctbal)
                from
                    clickzetta_sample_data.tpch_100g.customer
                where
                    c_acctbal > 0.00
                    and substring(c_phone from 1 for 2) in
                        ('13', '31', '23', '29', '30', '18', '17')
            )
            and not exists ( -- 第二层NOT EXISTS子查询
                select
                    *
                from
                    clickzetta_sample_data.tpch_100g.orders
                where
                    o_custkey = c_custkey
            )
    ) as custsale
group by
    cntrycode
order by
    cntrycode;

Test Results

Below are the performance test results of Singdata Lakehouse and Trino on 22 queries, measured in milliseconds (ms). Lower values indicate better performance.

  • All queries were pre-warmed once, then executed three times, and the average value was taken as the result.
QuerySingdata LakehouseTrinoTrino vs Singdata Lakehouse
Q165832404.92
Q21807404.11
Q330018406.13
Q4177297016.78
Q584416701.98
Q689255028.65
Q725111904.74
Q844124005.44
Q97941283016.16
Q1030825208.18
Q111513001.99
Q1212210608.69
Q1353245708.59
Q1487248028.51
Q15155414026.71
Q1617716709.44
Q17257852033.15
Q18726928012.78
Q192619103.49
Q20197271013.76
Q2146236507.90
Q2223316206.95
Total7402728609.84