Overview
TPC-DS (Transaction Processing Performance Council - Decision Support) is a benchmark standard released by the Transaction Processing Performance Council (TPC) aimed at evaluating the performance of Decision Support Systems (DSS). Compared to TPC-H, which is more suitable for evaluating traditional query and reporting performance, TPC-DS includes complex applications such as data set analysis reports, interactive queries, and data mining, which are closer to real-world data warehouse business analysis scenarios.
This report provides you with the test results of Singdata Lakehouse and Spark SQL on the TPC-DS test set with a scale of 10TB. The conclusions are as follows:

- In the comparative test on the TPC-DS 10TB scale data set, Singdata Lakehouse showed significant performance advantages over Spark, with performance equivalent to 9.51 times that of Spark.
- Singdata Lakehouse has a significant performance improvement for long-running Spark jobs.
Test Environment
Configuration Item | Configuration Information |
---|
Server | Hadoop Cluster Service: Master Node: 1 Alibaba Cloud ECS Server (ecs.g8i.xlarge 4 vCPU 16 GiB) Core Nodes: 4 Alibaba Cloud ECS Servers (ecs.g7.8xlarge 32 vCPU 128 GiB), each server configured with ESSD cloud disk 300GiB*4 |
Network Bandwidth | 16Gbps |
Software | Spark-3.4.2 |
Storage Service | Alibaba Cloud OSS Object Storage |
Data Format | Default Parquet, Snappy Compression |
- Singdata Lakehouse Test Environment
Configuration Item | Configuration Information |
---|
Computing Resources | Virtual Cluster: XLarge (128vCore equivalent computing power) |
Software | Alibaba Cloud Shanghai Region - Singdata Lakehouse Service |
Storage Service | Managed Storage, Alibaba Cloud OSS Object Storage |
Test Data
Table | Number of Rows |
---|
call_center | 54 |
catalog_page | 40,000 |
catalog_returns | 1,440,033,112 |
catalog_sales | 14,399,964,710 |
customer | 65,000,000 |
customer_address | 32,500,000 |
customer_demographics | 1,920,800 |
date_dim | 73,049 |
household_demographics | 7,200 |
income_band | 20 |
inventory | 1,311,525,000 |
item | 402,000 |
promotion | 2,000 |
reason | 70 |
ship_mode | 20 |
store | 1,500 |
store_returns | 2,880,015,149 |
store_sales | 28,799,944,153 |
time_dim | 86,400 |
warehouse | 25 |
web_page | 4,002 |
web_returns | 720,020,485 |
web_sales | 7,199,963,324 |
web_site | 78 |
- Statistics collected through Analyze on data tables.
Test Process
In the test, we selected 103 complex SQL queries from the TPC-DS benchmark to perform performance testing on a 10TB dataset. The test results include the execution time of each query in Singdata Lakehouse and Spark SQL, as well as the performance comparison between the two.
Spark
Create TPC-DS data tables in the metadata service, using Parquet file format, with the same partition settings as Lakehouse.
At the same time, export the TPC-DS 10TB test data from Singdata Lakehouse and save it to the object storage service in the form of data files to ensure that the test data for both parties is the same. Then use the Insert Into method in Spark to read the data files and write them into the data tables defined by Spark.
- Add parameters when running TPC-DS 103 queries in Spark:
-- One of the essential parameters to adjust for large-scale jobs in the Spark production environment. When processing TPCDS-10T scale data, using the default maximum concurrency of 200 can lead to excessively high memory usage for a large number of tasks due to the relatively small scale, and it is very likely to trigger shuffle spill, which in turn slows down Spark's operation. After testing, it was observed that adjusting this parameter value to 2000 significantly reduced spills. Therefore, we decided to use the parameter value of 2000 to optimize Spark's operational performance.
set spark.sql.shuffle.partitions = 2000; the default value for Spark is 200
Singdata Lakehouse
Create Cluster and Table
Use Singdata Lakehouse XLARGE VCluster to test on Alibaba Cloud OSS, all tables use the default storage format.
create vcluster if not exists XLARGE_CLUSTER vcluster_size='XLARGE' vcluster_type='Analytics' AUTO_RESUME=TRUE AUTO_SUSPEND_IN_SECOND=300 min_replicas=1 max_replicas=1;
Create Table Statement
drop table if exists call_center;
drop table if exists catalog_page;
drop table if exists catalog_returns;
drop table if exists catalog_sales;
drop table if exists customer;
drop table if exists customer_address;
drop table if exists customer_demographics;
drop table if exists date_dim;
drop table if exists household_demographics;
drop table if exists income_band;
drop table if exists inventory;
drop table if exists item;
drop table if exists promotion;
drop table if exists reason;
drop table if exists ship_mode;
drop table if exists store;
drop table if exists store_returns;
drop table if exists store_sales;
drop table if exists time_dim;
drop table if exists warehouse;
drop table if exists web_page;
drop table if exists web_returns;
drop table if exists web_sales;
drop table if exists web_site;
Drop table if exists catalog_sales;
Drop table if exists catalog_returns;
Drop table if exists inventory;
Drop table if exists store_sales;
Drop table if exists store_returns;
Drop table if exists web_sales;
Drop table if exists catalog_sales;
Drop table if exists catalog_sales;
create table if not exists catalog_sales
(
cs_sold_date_sk int,
cs_sold_time_sk int,
cs_ship_date_sk int,
cs_bill_customer_sk int,
cs_bill_cdemo_sk int,
cs_bill_hdemo_sk int,
cs_bill_addr_sk int,
cs_ship_customer_sk int,
cs_ship_cdemo_sk int,
cs_ship_hdemo_sk int,
cs_ship_addr_sk int,
cs_call_center_sk int,
cs_catalog_page_sk int,
cs_ship_mode_sk int,
cs_warehouse_sk int,
cs_item_sk int,
cs_promo_sk int,
cs_order_number long,
cs_quantity int,
cs_wholesale_cost decimal(7,2),
cs_list_price decimal(7,2),
cs_sales_price decimal(7,2),
cs_ext_discount_amt decimal(7,2),
cs_ext_sales_price decimal(7,2),
cs_ext_wholesale_cost decimal(7,2),
cs_ext_list_price decimal(7,2),
cs_ext_tax decimal(7,2),
cs_coupon_amt decimal(7,2),
cs_ext_ship_cost decimal(7,2),
cs_net_paid decimal(7,2),
cs_net_paid_inc_tax decimal(7,2),
cs_net_paid_inc_ship decimal(7,2),
cs_net_paid_inc_ship_tax decimal(7,2),
cs_net_profit decimal(7,2)
) partitioned by (cs_sold_date_sk);
create table if not exists catalog_returns
(
cr_returned_date_sk int,
cr_returned_time_sk int,
cr_item_sk int,
cr_refunded_customer_sk int,
cr_refunded_cdemo_sk int,
cr_refunded_hdemo_sk int,
cr_refunded_addr_sk int,
cr_returning_customer_sk int,
cr_returning_cdemo_sk int,
cr_returning_hdemo_sk int,
cr_returning_addr_sk int,
cr_call_center_sk int,
cr_catalog_page_sk int,
cr_ship_mode_sk int,
cr_warehouse_sk int,
cr_reason_sk int,
cr_order_number long,
cr_return_quantity int,
cr_return_amount decimal(7,2),
cr_return_tax decimal(7,2),
cr_return_amt_inc_tax decimal(7,2),
cr_fee decimal(7,2),
cr_return_ship_cost decimal(7,2),
cr_refunded_cash decimal(7,2),
cr_reversed_charge decimal(7,2),
cr_store_credit decimal(7,2),
cr_net_loss decimal(7,2)
) partitioned by (cr_returned_date_sk);
create table if not exists inventory
(
inv_date_sk int,
inv_item_sk int,
inv_warehouse_sk int,
inv_quantity_on_hand int
) partitioned by (inv_date_sk);
create table if not exists store_sales
(
ss_sold_date_sk int,
ss_sold_time_sk int,
ss_item_sk int,
ss_customer_sk int,
ss_cdemo_sk int,
ss_hdemo_sk int,
ss_addr_sk int,
ss_store_sk int,
ss_promo_sk int,
ss_ticket_number long,
ss_quantity int,
ss_wholesale_cost decimal(7,2),
ss_list_price decimal(7,2),
ss_sales_price decimal(7,2),
ss_ext_discount_amt decimal(7,2),
ss_ext_sales_price decimal(7,2),
ss_ext_wholesale_cost decimal(7,2),
ss_ext_list_price decimal(7,2),
ss_ext_tax decimal(7,2),
ss_coupon_amt decimal(7,2),
ss_net_paid decimal(7,2),
ss_net_paid_inc_tax decimal(7,2),
ss_net_profit decimal(7,2)
) partitioned by (ss_sold_date_sk);
create table if not exists store_returns
(
sr_returned_date_sk int,
sr_return_time_sk int,
sr_item_sk int,
sr_customer_sk int,
sr_cdemo_sk int,
sr_hdemo_sk int,
sr_addr_sk int,
sr_store_sk int,
sr_reason_sk int,
sr_ticket_number long,
sr_return_quantity int,
sr_return_amt decimal(7,2),
sr_return_tax decimal(7,2),
sr_return_amt_inc_tax decimal(7,2),
sr_fee decimal(7,2),
sr_return_ship_cost decimal(7,2),
sr_refunded_cash decimal(7,2),
sr_reversed_charge decimal(7,2),
sr_store_credit decimal(7,2),
sr_net_loss decimal(7,2)
) partitioned by (sr_returned_date_sk);
create table if not exists web_sales
(
ws_sold_date_sk int,
ws_sold_time_sk int,
ws_ship_date_sk int,
ws_item_sk int,
ws_bill_customer_sk int,
ws_bill_cdemo_sk int,
ws_bill_hdemo_sk int,
ws_bill_addr_sk int,
ws_ship_customer_sk int,
ws_ship_cdemo_sk int,
ws_ship_hdemo_sk int,
ws_ship_addr_sk int,
ws_web_page_sk int,
ws_web_site_sk int,
ws_ship_mode_sk int,
ws_warehouse_sk int,
ws_promo_sk int,
ws_order_number long,
ws_quantity int,
ws_wholesale_cost decimal(7,2),
ws_list_price decimal(7,2),
ws_sales_price decimal(7,2),
ws_ext_discount_amt decimal(7,2),
ws_ext_sales_price decimal(7,2),
ws_ext_wholesale_cost decimal(7,2),
ws_ext_list_price decimal(7,2),
ws_ext_tax decimal(7,2),
ws_coupon_amt decimal(7,2),
ws_ext_ship_cost decimal(7,2),
ws_net_paid decimal(7,2),
ws_net_paid_inc_tax decimal(7,2),
ws_net_paid_inc_ship decimal(7,2),
ws_net_paid_inc_ship_tax decimal(7,2),
ws_net_profit decimal(7,2)
) partitioned by (ws_sold_date_sk);
create table if not exists web_returns
(
wr_returned_date_sk int,
wr_returned_time_sk int,
wr_item_sk int,
wr_refunded_customer_sk int,
wr_refunded_cdemo_sk int,
wr_refunded_hdemo_sk int,
wr_refunded_addr_sk int,
wr_returning_customer_sk int,
wr_returning_cdemo_sk int,
wr_returning_hdemo_sk int,
wr_returning_addr_sk int,
wr_web_page_sk int,
wr_reason_sk int,
wr_order_number long,
wr_return_quantity int,
wr_return_amt decimal(7,2),
wr_return_tax decimal(7,2),
wr_return_amt_inc_tax decimal(7,2),
wr_fee decimal(7,2),
wr_return_ship_cost decimal(7,2),
wr_refunded_cash decimal(7,2),
wr_reversed_charge decimal(7,2),
wr_account_credit decimal(7,2),
wr_net_loss decimal(7,2)
) partitioned by (wr_returned_date_sk);
create table if not exists call_center
(
cc_call_center_sk int,
cc_call_center_id string,
cc_rec_start_date date,
cc_rec_end_date date,
cc_closed_date_sk int,
cc_open_date_sk int,
cc_name string,
cc_class string,
cc_employees int,
cc_sq_ft int,
cc_hours string,
cc_manager string,
cc_mkt_id int,
cc_mkt_class string,
cc_mkt_desc string,
cc_market_manager string,
cc_division int,
cc_division_name string,
cc_company int,
cc_company_name string,
cc_street_number string,
cc_street_name string,
cc_street_type string,
cc_suite_number string,
cc_city string,
cc_county string,
cc_state string,
cc_zip string,
cc_country string,
cc_gmt_offset decimal(5,2),
cc_tax_percentage decimal(5,2)
);
create table if not exists catalog_page (
cp_catalog_page_sk int,
cp_catalog_page_id string,
cp_start_date_sk int,
cp_end_date_sk int,
cp_department string,
cp_catalog_number int,
cp_catalog_page_number int,
cp_description string,
cp_type string) ;
create table if not exists customer (
c_customer_sk int,
c_customer_id string,
c_current_cdemo_sk int,
c_current_hdemo_sk int,
c_current_addr_sk int,
c_first_shipto_date_sk int,
c_first_sales_date_sk int,
c_salutation string,
c_first_name string,
c_last_name string,
c_preferred_cust_flag string,
c_birth_day int,
c_birth_month int,
c_birth_year int,
c_birth_country string,
c_login string,
c_email_address string,
c_last_review_date string) ;
create table if not exists customer_address (
ca_address_sk int,
ca_address_id string,
ca_street_number string,
ca_street_name string,
ca_street_type string,
ca_suite_number string,
ca_city string,
ca_county string,
ca_state string,
ca_zip string,
ca_country string,
ca_gmt_offset decimal(5,2),
ca_location_type string) ;
create table if not exists customer_demographics (
cd_demo_sk int,
cd_gender string,
cd_marital_status string,
cd_education_status string,
cd_purchase_estimate int,
cd_credit_rating string,
cd_dep_count int,
cd_dep_employed_count int,
cd_dep_college_count int) ;
create table if not exists date_dim (
d_date_sk int,
d_date_id string,
d_date date,
d_month_seq int,
d_week_seq int,
d_quarter_seq int,
d_year int,
d_dow int,
d_moy int,
d_dom int,
d_qoy int,
d_fy_year int,
d_fy_quarter_seq int,
d_fy_week_seq int,
d_day_name string,
d_quarter_name string,
d_holiday string,
d_weekend string,
d_following_holiday string,
d_first_dom int,
d_last_dom int,
d_same_day_ly int,
d_same_day_lq int,
d_current_day string,
d_current_week string,
d_current_month string,
d_current_quarter string,
d_current_year string) ;
create table if not exists household_demographics (
hd_demo_sk int,
hd_income_band_sk int,
hd_buy_potential string,
hd_dep_count int,
hd_vehicle_count int) ;
create table if not exists income_band (
ib_income_band_sk int,
ib_lower_bound int,
ib_upper_bound int) using parquet ;
create table if not exists item (
i_item_sk int,
i_item_id string,
i_rec_start_date date,
i_rec_end_date date,
i_item_desc string,
i_current_price decimal(7,2),
i_wholesale_cost decimal(7,2),
i_brand_id int,
i_brand string,
i_class_id int,
i_class string,
i_category_id int,
i_category string,
i_manufact_id int,
i_manufact string,
i_size string,
i_formulation string,
i_color string,
i_units string,
i_container string,
i_manager_id int,
i_product_name string) ;
create table if not exists promotion (
p_promo_sk int,
p_promo_id string,
p_start_date_sk int,
p_end_date_sk int,
p_item_sk int,
p_cost decimal(15,2),
p_response_target int,
p_promo_name string,
p_channel_dmail string,
p_channel_email string,
p_channel_catalog string,
p_channel_tv string,
p_channel_radio string,
p_channel_press string,
p_channel_event string,
p_channel_demo string,
p_channel_details string,
p_purpose string,
p_discount_active string) ;
create table if not exists reason (
r_reason_sk int,
r_reason_id string,
r_reason_desc string) ;
create table if not exists ship_mode (
sm_ship_mode_sk int,
sm_ship_mode_id string,
sm_type string,
sm_code string,
sm_carrier string,
sm_contract string) ;
create table if not exists store (
s_store_sk int,
s_store_id string,
s_rec_start_date date,
s_rec_end_date date,
s_closed_date_sk int,
s_store_name string,
s_number_employees int,
s_floor_space int,
s_hours string,
s_manager string,
s_market_id int,
s_geography_class string,
s_market_desc string,
s_market_manager string,
s_division_id int,
s_division_name string,
s_company_id int,
s_company_name string,
s_street_number string,
s_street_name string,
s_street_type string,
s_suite_number string,
s_city string,
s_county string,
s_state string,
s_zip string,
s_country string,
s_gmt_offset decimal(5,2),
s_tax_precentage decimal(5,2)) ;
create table if not exists time_dim (
t_time_sk int,
t_time_id string,
t_time int,
t_hour int,
t_minute int,
t_second int,
t_am_pm string,
t_shift string,
t_sub_shift string,
t_meal_time string) ;
create table if not exists warehouse (
w_warehouse_sk int,
w_warehouse_id string,
w_warehouse_name string,
w_warehouse_sq_ft int,
w_street_number string,
w_street_name string,
w_street_type string,
w_suite_number string,
w_city string,
w_county string,
w_state string,
w_zip string,
w_country string,
w_gmt_offset decimal(5,2)) ;
create table if not exists web_page (
wp_web_page_sk int,
wp_web_page_id string,
wp_rec_start_date date,
wp_rec_end_date date,
wp_creation_date_sk int,
wp_access_date_sk int,
wp_autogen_flag string,
wp_customer_sk int,
wp_url string,
wp_type string,
wp_char_count int,
wp_link_count int,
wp_image_count int,
wp_max_ad_count int) ;
create table if not exists web_site (
web_site_sk int,
web_site_id string,
web_rec_start_date date,
web_rec_end_date date,
web_name string,
web_open_date_sk int,
web_close_date_sk int,
web_class string,
web_manager string,
web_mkt_id int,
web_mkt_class string,
web_mkt_desc string,
web_market_manager string,
web_company_id int,
web_company_name string,
web_street_number string,
web_street_name string,
web_street_type string,
web_suite_number string,
web_city string,
web_county string,
web_state string,
web_zip string,
web_country string,
web_gmt_offset decimal(5,2),
web_tax_percentage decimal(5,2)) ;
analyze table call_center compute statistics for all columns;
analyze table catalog_page compute statistics for all columns;
analyze table catalog_returns compute statistics for all columns;
analyze table catalog_sales compute statistics for all columns;
analyze table customer compute statistics for all columns;
analyze table customer_address compute statistics for all columns;
analyze table customer_demographics compute statistics for all columns;
analyze table date_dim compute statistics for all columns;
analyze table household_demographics compute statistics for all columns;
analyze table income_band compute statistics for all columns;
analyze table inventory compute statistics for all columns;
analyze table item compute statistics for all columns;
analyze table promotion compute statistics for all columns;
analyze table reason compute statistics for all columns;
analyze table ship_mode compute statistics for all columns;
analyze table store compute statistics for all columns;
analyze table store_returns compute statistics for all columns;
analyze table store_sales compute statistics for all columns;
analyze table time_dim compute statistics for all columns;
analyze table warehouse compute statistics for all columns;
analyze table web_page compute statistics for all columns;
analyze table web_returns compute statistics for all columns;
analyze table web_sales compute statistics for all columns;
analyze table web_site compute statistics for all columns;
Execute Query
TPC-DS 99 test query statements: TPC-DS-Query-SQL
Test Results
Below are the performance test results of Singdata Lakehouse and SparkSQL on 103 queries, measured in seconds (s). Lower values indicate better performance.
- All queries are taken as the first result
Query | Singdata Lakehouse | Spark SQL | Spark VS Lakehouse |
---|
query1 | 4.443 | 19.862 | 4.470402881 |
query2 | 36.636 | 150.416 | 4.105688394 |
query3 | 11.734 | 23.39 | 1.99335265 |
query4 | 92.902 | 642.398 | 6.914791931 |
query5 | 14.756 | 163.489 | 11.07949309 |
query6 | 1.892 | 6.562 | 3.468287526 |
query7 | 22.481 | 58.778 | 2.614563409 |
query8 | 4.55 | 16.04 | 3.525274725 |
query9 | 44.262 | 643.991 | 14.54952329 |
query10 | 1.999 | 50.347 | 25.18609305 |
query11 | 38.772 | 238.735 | 6.157407407 |
query12 | 1.253 | 5.334 | 4.25698324 |
query13 | 11.418 | 67.102 | 5.876861097 |
query14a | 88.878 | 490.051 | 5.513749184 |
query14b | 68.34 | 477.127 | 6.981665203 |
query15 | 2.96 | 11.923 | 4.028040541 |
query16 | 5.515 | 288.996 | 52.40181324 |
query17 | 8.452 | 66.575 | 7.876833885 |
query18 | 6.262 | 55.001 | 8.783296072 |
query19 | 2.704 | 10.693 | 3.954511834 |
query20 | 1.394 | 5.021 | 3.601865136 |
query21 | 0.68 | 3.179 | 4.675 |
query22 | 11.084 | 9.145 | 0.825063154 |
query23a | 98.722 | 1393.112 | 14.11146452 |
query23b | 95.845 | 1831.948 | 19.11365225 |
query24a | 34.641 | 925.881 | 26.72789469 |
query24b | 30.553 | 943.611 | 30.8843976 |
query25 | 19.821 | 56.483 | 2.849654407 |
query26 | 2.931 | 33.09 | 11.28966223 |
query27 | 6.185 | 54.93 | 8.881164107 |
query28 | 30.606 | 802.205 | 26.21071032 |
query29 | 13.697 | 186.704 | 13.63101409 |
query30 | 3.153 | 19.232 | 6.099587694 |
query31 | 5.057 | 56.973 | 11.26616571 |
query32 | 1.577 | 7.139 | 4.526949905 |
query33 | 2.874 | 11.521 | 4.008698678 |
query34 | 4.012 | 27.371 | 6.822283151 |
query35 | 6.341 | 79.325 | 12.50985649 |
query36 | 12.823 | 72.549 | 5.657724401 |
query37 | 3.868 | 105.236 | 27.20682523 |
query38 | 15.221 | 152.692 | 10.03166678 |
query39a | 1.321 | 10.08 | 7.630582892 |
query39b | 0.967 | 8.013 | 8.286452947 |
query40 | 6.619 | 45.539 | 6.880042302 |
query41 | 0.117 | 1.111 | 9.495726496 |
query42 | 1.329 | 6.668 | 5.017306245 |
query43 | 2.993 | 21.24 | 7.096558637 |
query44 | 13.759 | 15.644 | 1.137001236 |
query45 | 1.987 | 12.449 | 6.265223956 |
query46 | 5.432 | 43.515 | 8.010861561 |
query47 | 21.831 | 133.503 | 6.115294764 |
query48 | 5.025 | 51.675 | 10.28358209 |
query49 | 13.327 | 74.877 | 5.618443761 |
query50 | 28.519 | 789.925 | 27.6982012 |
query51 | 17.596 | 64.181 | 3.647476699 |
query52 | 1.685 | 8.68 | 5.151335312 |
query53 | 2.149 | 32.213 | 14.98976268 |
query54 | 11.418 | 20.148 | 1.764582239 |
query55 | 0.485 | 7.111 | 14.66185567 |
query56 | 1.81 | 12.856 | 7.102762431 |
query57 | 13.724 | 74.714 | 5.444039639 |
query58 | 1.425 | 7.478 | 5.247719298 |
query59 | 16.064 | 158.025 | 9.837213645 |
query60 | 2.959 | 21.837 | 7.37985806 |
query61 | 4.576 | 15.982 | 3.49256993 |
query62 | 5.258 | 33.378 | 6.34804108 |
query63 | 3.055 | 29.13 | 9.535188216 |
query64 | 32.014 | 663.722 | 20.73224214 |
query65 | 33.916 | 185.219 | 5.461109801 |
query66 | 7.19 | 48.583 | 6.757023644 |
query67 | 186.6 | 451.875 | 2.421623794 |
query68 | 2.945 | 17.482 | 5.936162988 |
query69 | 2.083 | 22.042 | 10.5818531 |
query70 | 22.752 | 59.801 | 2.628384318 |
query71 | 3.034 | 21.498 | 7.085695452 |
query72 | 11.45 | 212.094 | 18.52349345 |
query73 | 1.146 | 9.69 | 8.455497382 |
query74 | 27.236 | 224.447 | 8.240820972 |
query75 | 46.678 | 385.93 | 8.267920648 |
query76 | 17.695 | 321.027 | 18.14224357 |
query77 | 1.804 | 13.863 | 7.6845898 |
query78 | 181.223 | 669.242 | 3.692919773 |
query79 | 4.042 | 28.374 | 7.019792182 |
query80 | 11.991 | 163.789 | 13.65932783 |
query81 | 3.2 | 26.454 | 8.266875 |
query82 | 4.572 | 208.444 | 45.59142607 |
query83 | 0.795 | 6.253 | 7.865408805 |
query84 | 4.277 | 23.8 | 5.564648118 |
query85 | 6.826 | 46.928 | 6.874890126 |
query86 | 7.527 | 32.703 | 4.344758868 |
query87 | 15.751 | 159.444 | 10.12278585 |
query88 | 52.074 | 801.005 | 15.38205246 |
query89 | 3.389 | 34.134 | 10.07199764 |
query90 | 4.48 | 66.709 | 14.89040179 |
query91 | 0.527 | 6.78 | 12.86527514 |
query92 | 1.621 | 5.989 | 3.694632943 |
query93 | 0.03 | 0.866 | 28.86666667 |
query94 | 10.33 | 164.88 | 15.96127783 |
query95 | 49.464 | 381.528 | 7.713245997 |
query96 | 11.947 | 99.414 | 8.321252197 |
query97 | 30.497 | 178.751 | 5.861265042 |
query98 | 2.005 | 9.795 | 4.885286783 |
query99 | 9.352 | 62.952 | 6.731394354 |
sum | 1869.187 | 17779.636 | 9.511962153 |