ClickZetta SQLAlchemy Adapter
clickzetta-sqlalchemy
is a dialect adapter for ClickZetta Lakehouse provided for SQLAlchemy, allowing code or upper-layer applications written with the SQLAlchemy interface to easily interact with ClickZetta Lakehouse.
Installation
Install clickzetta-sqlalchemy
via pip:
pip install clickzetta-sqlalchemy
Quick Start
Execute SQL Query
from sqlalchemy import create_engine
from sqlalchemy import text
# Create an instance of the SQLAlchemy engine for ClickZetta Lakehouse
engine = create_engine(
"clickzetta://username:password@instance.api.singdata.com/workspace?schema=schema&vcluster=default"
)
# Execute SQL query
sql = text("SELECT * FROM ecommerce_events_multicategorystore_live;")
# Execute the query using the engine
with engine.connect() as conn:
result = conn.execute(sql)
for row in result:
print(row)
Example: Using PyGWalker for Visual Analysis of Lakehouse Data
PyGWalker is a tool that can convert pandas and polars data frames into a Tableau-style user interface for data visualization exploration. It simplifies the Jupyter Notebook data analysis and data visualization workflow, requiring only one line of code to implement.
from sqlalchemy import create_engine
from sqlalchemy import text
import pandas as pd
import pygwalker as pyg
# Create an instance of the SQLAlchemy engine for ClickZetta Lakehouse
engine = create_engine(
"clickzetta://username:password@instance.api.singdata.com/workspace?schema=schema&vcluster=default"
)
# Execute SQL query
sql = text("SELECT * FROM ecommerce_events_multicategorystore_live;")
# Execute the query using the engine and get the results
with engine.connect() as conn:
result = conn.execute(sql)
df = pd.DataFrame(result.fetchall(), columns=result.keys())
# Use PyGWalker for visual analysis of the DataFrame
walker = pyg.walk(df)